44 research outputs found

    Optimisation of deep drawn corners subject to hot stamping constraints using a novel deep-learning-based platform

    Get PDF
    State-of-the-art hot stamping processes offer improved material formability and therefore have potential to successfully form challenging components. The feasibility of components to be formed through these processes is dependent on their geometric design and its complex interactions with the hot stamping environment. In industrial practice, trial-and-error approaches are currently used to update non-feasible designs where simulation runs are needed each time a design change is made. These approaches make the design process resource intensive and require considerable numerical and process expertise. To demonstrate a superior approach, this study presents a novel application of a deep-learning-based optimisation platform which adopts a non-parametric geometric modelling strategy. Here, deep drawn corner geometries from different geometry subclasses were optimised to minimise wasted volume due to radii while avoiding excessive post-stamping thinning. A neural network was trained to generate families of deep drawn corner geometries where each geometry was conditioned on an input latent vector. Another neural network was trained to predict the thinning distributions obtained from forming these geometries through a hot stamping process. Guided by these distributions, the latent vector, and therefore geometry, was iteratively updated by a new gradient-based optimisation technique. Overall, it is demonstrated that the platform is capable of optimising geometries, irrespective of complexity, subject to imposed post-stamped thinning constraints

    Deformation and thinning field prediction for HFQ® formed panel components using convolutional neural networks

    Get PDF
    The novel Hot Forming and cold die Quenching (HFQ®) process can provide cost-effective and complex deep drawn solutions through high strength aluminium alloys. However, the unfamiliarity of the new process prevents its widescale adoption in industrial settings, while accurate Finite Element (FE) simulations using the most advanced material models take place late in design processes and require forming process expertise. Machine learning technologies have recently been proven successful in learning complex system behaviour from representative examples and have the potential to be used as design support tools for new forming technologies such as HFQ®. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate to predict the deformation and thinning fields for variable deep drawn geometries formed using HFQ® technology. A dataset based on deep drawn geometries and corresponding FE results is generated and used to train the model. The results show that near indistinguishable full field predictions in real time are obtained from the surrogate when compared with HFQ® simulations. This technique can be adopted in industrial settings to aid in both concept and detailed component design for complex-shaped panel components formed under HFQ® conditions, without underlying knowledge of the forming process

    Optimisation of panel component regions subject to hot stamping constraints using a novel deep-learning-based platform

    Get PDF
    The latest hot stamping processes can enable efficient production of complex shaped panel components with high stiffness-to-weight ratios. However, structural redesign for these intricate processes can be challenging, because compared to cold forming, the non-isothermal and dynamic nature of these processes introduces complexity and unfamiliarity among industrial designers. In industrial practice, trial-and-error approaches are currently used to update non-feasible designs where complicated forming simulations are needed each time a design change is made. A superior approach to structural redesign for hot stamping processes is demonstrated in this paper which applies a novel deep-learning-based optimisation platform. The platform consists of the interaction between two neural networks: a generator that creates 3D panel component geometries and an evaluator that predicts their post-stamping thinning distributions. Guided by these distributions the geometry is iteratively updated by a gradient-based optimisation technique. In the application presented in this paper, panel component geometries are optimised to meet imposed constraints that are derived from post-stamping thinning distributions. In addition, a new methodology is applied to select arbitrary geometric regions that are to be fixed during the optimisation. Overall, it is demonstrated that the platform is capable of optimising selective regions of panel component subject to imposed post-stamped thinning distribution constraints

    Rapid feasibility assessment of components to be formed through hot stamping: A deep learning approach

    Get PDF
    The novel non-isothermal Hot Forming and cold die Quenching (HFQ) process can enable the cost-effective production of complex shaped, high strength aluminium alloy panel components. However, the unfamiliarity of designing for the new process prevents its widescale adoption in industrial settings. Recent research efforts focus on the development of advanced material models for finite element simulations, used to assess the feasibility of new component designs for the HFQ process. However, FE simulations take place late in design processes, require forming process expertise and are unsuitable for early-stage design explorations. To address these limitations, this study presents a novel application of a Convolutional Neural Network (CNN) based surrogate as a means of rapid manufacturing feasibility assessment for components to be formed using the HFQ process. A diverse dataset containing variations in component geometry, blank shapes, and processing parameters, together with corresponding physical fields is generated and used to train the model. The results show that near indistinguishable full field predictions are obtained in real time from the model when compared with HFQ simulations. This technique provides an invaluable tool to aid component design and decision making at the onset of a design process for complex-shaped components formed under HFQ conditions

    Implicit neural representations of sheet stamping geometries with small-scale features

    Get PDF
    Geometric deep learning models, like Convolutional Neural Networks (CNNs), show promise as surrogate models for predicting sheet stamping manufacturability but lack design variables essential for inverse problems like geometric optimisation. Recent developments in deep learning have enabled geometry generation from compact latent spaces that are suitable for optimisation. However, current methods do not accurately model small-scale geometric features that are crucial for stamping performance. This study proposes a new deep learning-based method to address this limitation and generate detailed stamping geometries for optimisation. Specifically, neural networks are trained to generate Signed Distance Fields (SDFs) for stamping geometries, where the zero-level-set of each SDF implicitly represents the generated geometry. A new training approach is proposed for generating SDFs of stamping geometries, which involves supervising geometric properties of the SDFs. A novel loss function is introduced that directly acts on the zero-level-set and places high emphasis on learning small-scale features. This approach is compared with the state-of-the-art approach DeepSDF by Park et al. (2019), which explicitly supervises SDF values using ground truth data. The geometry generation performance of networks trained using both approaches is evaluated quantitatively and qualitatively. The results demonstrate significantly greater geometric accuracy with the proposed approach, which can faithfully generate small-scale features. Further analysis of the new approach reveals an organised learned latent space and varying the network input generates high-quality geometries from this space. By integrating with CNN-based manufacturability surrogate models by Attar et al. (2021), this work could enable the first-ever manufacturability-constrained optimisation of arbitrary sheet stamping geometries, potentially reducing geometry design time and cost

    SuperMeshing: a new deep learning architecture for increasing the mesh density of physical fields in metal forming numerical simulation

    Get PDF
    In stress field analysis, the finite element method is a crucial approach, in which the mesh-density has a significant impact on the results. High mesh density usually contributes authentic to simulation results but costs more computing resources. To eliminate this drawback, we propose a data-driven mesh-density boost model named SuperMeshingNet that uses low mesh-density as inputs, to acquire high-density stress field instantaneously, shortening computing time and cost automatically. Moreover, the Res-UNet architecture and attention mechanism are utilized, enhancing the performance of SuperMeshingNet. Compared with the baseline that applied the linear interpolation method, SuperMeshingNet achieves a prominent reduction in the mean squared error (MSE) and mean absolute error (MAE) on the test data. The well-trained model can successfully show more excellent performance than the baseline models on the multiple scaled mesh-density, including 2X, 4X, and 8X. Enhanced by SuperMeshingNet with broaden scaling of mesh density and high precision output, FEA can be accelerated with seldom computational time and cost

    The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group

    Get PDF
    The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC

    The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions

    Get PDF
    UK Biobank is a population-based cohort of half a million participants aged 40–69 years recruited between 2006 and 2010. In 2014, UK Biobank started the world’s largest multi-modal imaging study, with the aim of re-inviting 100,000 participants to undergo brain, cardiac and abdominal magnetic resonance imaging, dual-energy X-ray absorptiometry and carotid ultrasound. The combination of large-scale multi-modal imaging with extensive phenotypic and genetic data offers an unprecedented resource for scientists to conduct health-related research. This article provides an in-depth overview of the imaging enhancement, including the data collected, how it is managed and processed, and future direction

    Community Violence and Youth: Affect, Behavior, Substance Use, and Academics

    Get PDF
    Community violence is recognized as a major public health problem (WHO, World Report on Violence and Health,2002) that Americans increasingly understand has adverse implications beyond inner-cities. However, the majority of research on chronic community violence exposure focuses on ethnic minority, impoverished, and/or crime-ridden communities while treatment and prevention focuses on the perpetrators of the violence, not on the youth who are its direct or indirect victims. School-based treatment and preventive interventions are needed for children at elevated risk for exposure to community violence. In preparation, a longitudinal, community epidemiological study, The Multiple Opportunities to Reach Excellence (MORE) Project, is being fielded to address some of the methodological weaknesses presented in previous studies. This study was designed to better understand the impact of children’s chronic exposure to community violence on their emotional, behavioral, substance use, and academic functioning with an overarching goal to identify malleable risk and protective factors which can be targeted in preventive and intervention programs. This paper describes the MORE Project, its conceptual underpinnings, goals, and methodology, as well as implications for treatment and preventive interventions and future research
    corecore